Онлайн калькулятор для расчета стальных радиаторов отопления.

Расчет радиаторов отопления по площади

Основным материалом для изготовления панельных радиаторов является сталь. Сталь, как высокотехнологичный материал обладает отличным набором свойств: прочность, ковкость, гибкость – всё это предает агрегатам из стали массу полезных свойств, а хорошая податливость сварке и высокая теплопроводность делают сталь идеальным материалом для радиаторов отопления.

Главной конструктивной единицей панельного радиатора является панель, которых, в зависимости от типа радиатора, может быть и одна, и две, и три.

Панель радиатора – это два сваренных между собой тонких стальных листа. Листы же до сварки проходят штамповку, где им предаётся профиль – это и есть каналы для циркуляции нагретой жидкости в панели радиатора. Панели, если их две и более, соединенные между собой трубками, с металлическим кожухом по бокам и декоративной верхней решеткой и есть готовый панельный радиатор отопления.

Для повышения теплоотдачи и скорости обогрева помещения, радиатор может оснащаться конвекционными ходами с внутренней стороны панелей в виде ребристого листа из более тонкой стали, что способствует перемещению воздушных масс в помещении и равномерному обогреву.

Как видно, технология изготовления данных агрегатов проста, что и объясняет их достаточно низкую стоимость.

Если производитель не экономит на качестве материала и для производства радиаторов использует качественную сталь, применяет современные технологичные методы нанесения защитного покрытия, то такой радиатор гарантированно и бесперебойно служит долгие годы.

В зависимости от количества панелей и конвекторов панельные радиаторы делятся на типы. Двухзначное число к маркировке панельного радиатора является обозначением его принадлежности к определенному типу, где первая цифра – это количество панелей, а вторая, соответственно, количество конвекторов.

Тип 10 – панельный радиатор, состоящий из одной панели без конвектора, кожухов и верхней решетки.

Тип 20 – панельный радиатор, состоящий из соединенных между собой патрубками двух панелей, без конвектора, кожухов и закрытый верхней решетки.

Тип 30 – панельный радиатор, состоящий из соединенных между собой патрубками трех панелей, без конвектора, кожухов и закрытый верхней решетки.

Тип 11 – панельный радиатор, состоящий из одной панели, одного конвектора, без кожухов и верхней решетки.

Тип 21 – панельный радиатор, состоящий из соединенных между собой патрубками двух панелей, одним конвектором, закрытый кожухом и верхней решеткой.

Тип 22 – панельный радиатор, состоящий из соединенных между собой патрубками двух панелей, двумя конвекторами, закрытый кожухом и верхней решеткой.

Тип 33 – панельный радиатор, состоящий из соединенных между собой патрубками трех панелей, тремя конвекторами, закрытый кожухом и верхней решеткой.

Панельный радиатор является эффективным отопительным агрегатом и за счет большой нагреваемой площади имеет повышенную теплоотдачу. Панельные радиаторы имеют широкий диапазон размеров, как по вертикали, от 300 до 900 мм, так и по горизонтали, от 400 до 3000 мм.

В зависимости от размера и типа панельного радиатора меняется и его показатель теплоотдачи, то есть количество отдаваемого тепла радиатором в единицу времени, который измеряется в Ваттах (Вт). Каждый радиатор, помимо маркировки типа и габаритов имеет свой основной показатель – тепловую мощность.

Есть усредненные простейшие формулы расчета требуемой суммарной тепловой мощности для отопления помещений.

Первый способ, исходит из расчета в 100 Вт на 1 м² помещения. Для примера, если комната 15 м² то 100 х 15 = 1 500 Вт. Соответственно, нам необходим радиатор мощностью не ниже 1 500 Вт, к примеру подойдет панельный радиатор 500х800, тип 22 с мощностью 1 515 Вт.

Но существует множество внешних факторов и переменных, влияющих на сумму необходимой тепловой энергии для поддержания комфортной температуры в комнате.

Факторы влияния есть очевидные: высота потолков, количество окон, наличие наружной двери в комнате, теплоизоляция дома – пола, стен и потолков, метод подключения и расположение радиаторов отопления. Но не менее важными факторами будут и роза ветров, верхний и нижний температурные пороги в отапливаемое время года, даже ориентация стен по сторонам света.

В действительности сложно учесть все эти факторы для точного расчета требуемой тепловой мощности и для бытового расчета приняты некоторые правила:

– наличие окна в помещении 100 Вт;

Предлагаем ознакомиться  Как выбрать дополнительный обогреватель? Выбираем среди теплового оборудования || Где лучше поставить радиаторы для эффективного и равномерного обогрева комнаты

– наличие наружной двери 200;

– суммарное влияние всех неучтенных факторов 20% к полученной сумме требуемой тепловой мощности.

Во второй формуле будем исходить из расчета в 40 Вт на 1 м³ и учета вышеизложенных правил.

К примеру, комната 3 на 6 метров и высотой потолков 3,2 метров, двумя окнами, одно шириной 900 мм, второе – 1200 мм и внешней дверью:

(3 х 6 х 3,2 х 40 (100 х 2) 200) 20% = 3 245 Вт

Итого, 3 245 Вт тепловой энергии радиаторов требуется для обогрева нашей комнаты.

            3 245 / 2 окна и получаем среднюю тепловую мощность на один радиатор, равную 1 622 Вт

Конечно, можно установить под каждое окно в комнате по одному радиатору Airfel 500×900, тип 22 с тепловой мощностью 1704, но для достижения максимального эффекта необходимо учесть и размеры оконных проёмов.

Касаемо установки самих радиаторов, необходимо следовать некоторым правилам. Например, при наличии окон в комнате, как во втором примете, радиаторы нужно устанавливать на стене под окнами, чтобы конвекционный поток нагретого воздуха создавал тепловой щит. Также радиатор должен быть равен минимум 80% от ширины оконного проема.

А теперь, воспользовавшись таблицей отдаваемой тепловой мощности и учитывая количество окон в комнате и их ширину проемов, подберем панельный радиатор, отвечающий нашим требованиям:

Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:

  • для средней климатической полосы на отопление 1м2 жилого помещения требуется 60-100Вт;
  • для областей выше 60о требуется 150-200Вт.

Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м2, потребуется 1600Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60Вт.

Расчет радиаторов отопления можно сделать по нормам СНиП

Расчет радиаторов отопления можно сделать по нормам СНиП

Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»

Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.

Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.

Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.

При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:

  • в панельном доме на обогрев кубометра воздуха требуется 41Вт;
  • в кирпичном доме на м3 — 34Вт.
    Обогревать нужно весь объем воздуха в помещении потому правильнее считать количество радиаторов по объему

    Обогревать нужно весь объем воздуха в помещении потому правильнее считать количество радиаторов по объему

Рассчитаем все для того же помещения площадью 16м2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м3.

Дальше посчитаем для вариантов в панельном и кирпичном доме:

  • В панельном доме. Требуемое на отопление тепло 43,2м3*41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
  • В кирпичном доме. Тепла нужно 43,2м3*34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).

Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.

Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50 см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность.

Предлагаем ознакомиться  Как закрыть вентиль на батарее отопления?

Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.

Осевое расстояние определяют между центрами отверстий для теплоносителя

Осевое расстояние определяют между центрами отверстий для теплоносителя

Корректировка результатов

Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

Количество радиаторов зависит от величины потерь тепла

Количество радиаторов зависит от величины потерь тепла

На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

  • соотношение площади окна к площади пола:
    • 10% — 0,8
    • 20% — 0,9
    • 30% — 1,0
    • 40% — 1,1
    • 50% — 1,2
  • остекление:
    • трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
    • обычный двухкамерный стеклопакет — 1,0
    • обычные двойные рамы — 1,27.

Стены и кровля

Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

Степень теплоизоляции:

  • кирпичные стены толщиной в два кирпича считаются нормой — 1,0
  • недостаточная (отсутствует) — 1,27
  • хорошая — 0,8

Расчет радиаторов зависит от потерь тепла помещением и номинальной тепловой мощности секций

Наличие наружных стен:

  • внутреннее помещение — без потерь, коэффициент 1,0
  • одна — 1,1
  • две — 1,2
  • три — 1,3

На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.

Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.

Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

Можно внести корректировки в зависимости от средних температур зимой:

  • -10оС и выше — 0,7
  • -15оС — 0,9
  • -20оС — 1,1
  • -25оС — 1,3
  • -30оС — 1,5

Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.

Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90оС, в обратке — 70оС (обозначается 90/70) в помещении при этом должно быть 20оС. Но в таком режиме современные системы отопления работают очень редко.

Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.

Чтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м2. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м2. Потому нам потребуется 16м2/1,5м2=10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:

  • высокотемпературная 90/70/20- (90 70)/2-20=60оС;
  • низкотемпературный 55/45/20 — (55 45)/2-20=30оС.
Предлагаем ознакомиться  Как выбрать газовый котел: выбираем котел по критериям для отопления частного дома

То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.

При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20оС а, например, 25оС просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25.

Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.

Потери тепла на радиаторах в зависимости от подключения

Потери тепла на радиаторах в зависимости от подключения

Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.

Количество тепла зависит и от установки

Количество тепла зависит и от установки

Количество тепла зависит и от места установки

Количество тепла зависит и от места установки

Есть еще один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления, когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная.

И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.

В однотрубной системе вода на каждый радиатор поступает все более холодная

В однотрубной системе вода на каждый радиатор поступает все более холодная

Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой.

Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт.

В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции

В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции

Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают  радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя.

ТАБЛИЦА ТЕПЛООТДАЧИ ПАНЕЛЬНЫХ РАДИАТОРОВ PRADO

Расчет чугунных радиаторов отопления. Считать может по площади или объему помещения

Изучив таблицу теплоотдачи, рекомендовано в комнате из примера установить два отопительных радиатора, один – Airfel 500×800 mm с тепловой мощностью 1515 Вт под окном шириной 900 мм и второй – Airfel 500×1000 mm с тепловой мощностью 1894 Вт под окном шириной 1200 мм. Мощности подобранных радиаторов будет достаточно для отопления нашей комнаты, а оставшийся запас можно использовать во время резкого похолодания, тем самым избежать перепадов температуры в помещении.

Итоги

https://www.youtube.com/watch?v=Ur_SpsKOPso

Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.

Возможно, вам интересно будет прочитать про расчет мощности котла или определение диаметра труб для системы отопления.

Супер отопление
Adblock detector