Виды и сферы применения пылевых вентиляторов

Осевые или аксиальные устройства

По типу циркуляции воздушного потока разделяют 2 типа систем вентиляции. Естественная — она происходит во всех помещениях, не оборудованных вентиляторами, естественным путем, посредством проветривания.

Принудительная подразделяется на приточную вентиляцию, которая подает свежий воздух с улицы, и вытяжную, когда вентиляторы выкачивают все неприятные запахи и отработанный воздух наружу. Именно в принудительных системах и используют вентиляторы.

По конструкции

По конструктивным нюансам и принципу функционирования существуют следующие типы вентиляторов:

  • аксиальные или осевые;
  • диагональный вариант;
  • центробежный вид;
  • диаметральные;
  • прямоточные (без лопастей).

Вентиляторы применяются в современных вентиляционных системах промышленных объектов: цехов или зданий, где осуществляется покраска под давлением, кондиционные системы. Промышленные закрытые системы используют их для активной перекачки разных газов или качественного процесса горения, как наддув.

Настенный осевой вентилятор

Существует классификация вентиляторов, которая зависит от среды или условий их применения:

  • обычные устройства, рассчитанные на перемещение воздуха или газов, температура которых не выше 80 градусов;
  • коррозионностойкий тип используется в средах с большой влажностью;
  • вентиляторы термостойкого типа, рассчитанные на применение гораздо выше 80 оС;
  • взрывобезопасные конструкции используются в средах, где существует опасность взрыва;
  • пылевые устройства применяются там, где наличие посторонних примесей находится выше 100 мг на кубический метр.

Пылевой вентилятор

Виды промышленных вентиляторов имеют градацию по способам присоединения привода:

  • непосредственное подсоединение вентилятора к электрическому двигателю;
  • используется эластичная муфта;
  • передача клиноременного типа;
  • бесступенчатая передача регулируемого вращения.

По типу установки

По методу монтажа изделия делятся на:

  • обычные — установка производится на опору специального вида (стальная рама, железобетонный фундамент или им подобные конструкции);
  • канальный вариант — монтируется только внутри воздуховода;
  • крышные — монтаж, как правило, производится на плоских крышах современных зданий.

Кроме вышеизложенного, существует классификация на основании технических характеристик изделий:

  • скорость истечения, измеряющийся в куб. м/час;
  • давление, Па;
  • скорость вращения, об/мин;
  • мощность устройства, кВт;
  • кпд, учитывающий потери на трение деталей, объем воздушного потока, конфигурацию воздуховодов;
  • уровень звукового воздействия на окружающих, Дб.

Последний вариант измеряется при всасывании, когда поток входит в помещение и при выходе его через сеть воздуховодов наружу.

Рабочие лопасти таких устройств вращаются вокруг одной оси и перемещают воздушный поток сквозь устройство. Конструкция отличается легкостью, поэтому она чрезвычайно популярна и часто используется в бытовых приборах: например, кулеры в системном блоке ПК, фены для сушки волос. Их КПД высокое, потому что у осевых устройств довольно невысокое сопротивление воздушному потоку, да и потери из-за трения почти отсутствует.

Конструктивно они выглядят как колесо, состоящее из консольного вида лопастей, жестко закрепленных под определенным углом, относительно воздушного потока, который всегда имеет направление параллельно оси вращения устройства. На входе устанавливают специальный коллектор, который выравнивает или спрямляет поток — это немаловажно для улучшения аэродинамики изделия.

Конструкция осевых изделий предельно простая: кожух с монтажными отверстиями для прочного закрепления на месте эксплуатации, электродвигатель вмонтирован внутрь устройства, а рабочее колесо — плотно посажено на вал  электропривода. Напор потока, как и его расход, регулируется расстоянием между лопастями.

Вентиляторы в системах проветривания имеют между собой множество отличий. Поэтому есть 5 категорий отличия этих механизмов.

Некоторые вентиляторы способны вращаться как в правую, так и в левую сторону.

1. Общие сведения о вентиляторах

По конструкции и принципу действия вентиляторы делятся на два основных типа – радиальные (центробежные) и осевые. Существует также ряд модификаций радиальных вентиляторов – диагональные, диаметральные (тангенциальные), дисковые и другие. В системах вентиляции и теплоэнергетических установках чаще всего применяются радиальные, осевые и диаметральные вентиляторы.

Радиальный вентилятор конструктивно (рис. 1) представляет собой расположенное в спиральном корпусе 3 рабочее колесо 6, при вращении которого воздух, поступающий через входной патрубок 1, попадает в межлопаточные каналы колеса и под действием центробежной силы перемещается по этим каналам, собирается в спиральном корпусе и далее подается в выходной патрубок 2. При прохождении газа через рабочее колесо его давление и кинетическая энергия возрастают.

Рис. 1. Радиальный вентилятор: 1– входной патрубок; 2 – выходной патрубок; 3 – корпус; 4 – электродвигатель; 5 – станина; 6 – рабочее колесо

Существуют конструкции радиального вентилятора с левым и правым направлением вращения рабочего колеса. Привод рабочего колеса может осуществляться непосредственно от вала электродвигателя либо через клиноременную передачу.

Виды и сферы применения пылевых вентиляторов

Осевой вентилятор (рис. 2) представляет собой расположенное в цилиндрическом корпусе 2 лопаточное рабочее колесо 1, при вращении которого поступающий через входной патрубок воздух под действием лопаток перемещается между ними в осевом направлении. Давление и кинетическая энергия потока при этом увеличиваются.

Рис. 2. Осевой вентилятор: 1 – рабочее колесо; 2 – корпус; 3 – электродвигатель; 4 – станина 

В диаметральном вентиляторе (рис. 3) перемещение воздуха происходит в плоскости, перпендикулярной оси вращения рабочего колеса 2. Рабочее колесо барабанного типа с загнутыми вперед лопатками. Корпус вентилятора напоминает корпус радиального вентилятора.

Рис. 3. Диаметральный вентилятор: 1– входной патрубок; 2 – рабочее колесо; 3 – выходной диффузор

Классификация типов вентиляционных вентиляторов и принцип их работы

По конструкции

От пользователя часто скрыты конструктивные особенности того или иного вентилятора. Поэтому их принято классифицировать по области применения. Например, знакомые всем кухонные вытяжки. Или вентиляторы, монтируемые непосредственно в воздушный канал санузла. Есть модели, предназначенные для установки на место форточки и множество других решений.

При выборе того или иного вентилятора важно правильно оценивать его условия эксплуатации. А именно, где будет работать устройство, во влажной или сухой среде, с запыленным или чистым воздухом, с опасностью падения предметов на лопасти или без. И здесь полезно обратить внимание на класс защиты прибора.

Стандарт IP описывает допустимый уровень опасности для прибора от попадания механических предметов и воды. После упомянутых букв указываются две цифры. Первая описывает допустимые параметры мусора и мелких предметов, попадание которых устройство выдержит без поломки. 0 означает отсутствие защиты, а имея IP6 — прибор может работать в как угодно сильно запыленном помещении.

Вторая цифра стандарта описывает влагостойкость. Здесь 0 также означает отсутствие защиты. Но переплачивать за высший ранг не стоит. IP42 означает, что прибор выдержит разовые брызги или может находиться под слабым, моросящим дождем. Устройства с IP55 разрешается бросить на газоне во время полива. Вентилятор IP56 способен работать на борту лодки в шторм.

Учитель

Высшие ранги защиты от воды позволяют прибору выдерживать серьезные испытания. IP67 означает, что устройство равнодушно к любым потокам воды и не испортится после 30 минут под водой на глубине 1 м. А самые дорогие приборы с классом защиты IP68 способны работать  погружении в жидкость длительное время.

2. Типы и характеристики вентиляторов

В радиальном вентиляторе воздух поступает через входное отверстие, которое всегда имеет круглую форму, и выходит через выходное отверстие, имеющее квадратную или прямоугольную форму.

Радиальные вентиляторы изготавливаются в соответствии с ГОСТ 5976-90 и распространяются на вентиляторы общего назначения для обычных сред, одноступенчатые, с горизонтально расположенной осью вращения, со спиральными корпусами, с рабочими колесами диаметром от 200 до 3150 мм, создающие полные напоры до 12 000 Па при плотности перемещаемой газообразной среды 1,2 кг/м3.

Стандарт не распространяется на вентиляторы специального исполнения (пылевые, взрывозащищенные, коррозионно-стойкие и др.) и вентиляторы, встроенные в агрегаты и машины, в том числе кондиционеры.

Радиальные вентиляторы классифицируются следующим образом.

По создаваемому давлению:

  • низкого давления, до 1000 Па;
  • среднего давления, от 1000 до 3000 Па;
  • высокого давления, свыше 3000 Па.
Предлагаем ознакомиться  Отделка трубы на крыше из профнастила

Следует отметить, что вентиляторы низкого давления при увеличении числа оборотов могут развивать среднее давление, следовательно, классификация по этому признаку является условной.

В системах вентиляции чаще применяются вентиляторы низкого и среднего давлений. Вентиляторы высокого давления используются в технологических установках, а также в вентиляционных системах при значительной протяженности воздуховодов и большом гидравлическом сопротивлении сети.

а) общего назначения – для перемещения воздуха и других газовых смесей, агрессивность которых по отношению к углеродистым сталям обыкновенного качества не выше агрессивности воздуха, с температурой до 80 ОС, не содержащих липких веществ, волокнистых материалов, с содержанием пыли и других твердых примесей не более 100 мг/м3. Такие вентиляторы применяются в системах кондиционирования воздуха и вентиляции, воздушного отопления и для производственных целей;

б) для технологических нужд – для перемещения агрессивных сред используют коррозионно-стойкие вентиляторы, выполненные из титана, нержавеющей стали, алюминия, винипласта, полипропилена, углеродистой стали с антикоррозионным покрытием; для перемещения воздуха с температурой выше 80 ОС используют термостойкие вентиляторы;

для перемещения взрывоопасных сред (по специальным условиям) – взрывозащищенные вентиляторы; для перемещения воздуха, засоренного механическими примесями, и пневматического транспортирования материалов с содержанием пыли более 100 мг/м3 используют пылевые вентиляторы с повышенными требованиями в отношении износоустойчивости;

в) дымососы – для перемещения дымовых газов (применяются в тяговых установках котельных).

По направлению вращения рабочего колеса:

  • правого вращения – если колесо вращается по часовой стрелке (со стороны станины);
  • левого вращения, если колесо вращается против часовой стрелки.

По классу в зависимости от величины окружной скорости колеса u:

  • к первому классу относятся вентиляторы с загнутыми вперед лопатками при u < 30 м/с и вентиляторы с загнутыми назад лопатками при u < 50 м/с;
  • ко второму классу относятся вентиляторы с загнутыми вперед лопатками при u > 30 м/с и вентиляторы с загнутыми назад лопатками при u > 50 м/с.

По расположению выходного отверстия: верхнее; правое; левое; нижнее. Возможны промежуточные положения выходного отверстия (под углом к горизонтали в 450).

По способу привода: на ременной передаче и на одном валу с двигателем.

На рис. 2 изображены спиральные корпусы и рабочие колеса радиальных вентиляторов.

Рис. 2. Спиральные корпусы и рабочие колеса радиальных вентиляторов: а – низкого давления с числом лопастей 12, 24, 36 или 48; б – среднего давления с числом лопастей 12 или 24; а в – пылевого с 6 лопастями; г – высокого давления

Рис. 3. Положение кожуха радиальных вентиляторов общего назначения: а – вентиляторов правого вращения; б – вентиляторов левого вращения

Рис. 4. Конструктивные схемы исполнения радиальных вентиляторов

Виды и сферы применения пылевых вентиляторов

На рис. 3 показаны различные положения спирального корпуса радиальных вентиляторов. Углы поворота корпуса отсчитывают по направлению вращения рабочего колеса в соответствии с рис. 3.

Вращение колеса будет правильным, если оно направлено по ходу разворота спирали кожуха.

Конструктивные схемы исполнения радиальных вентиляторов представлены на рис. 4. Допускается для вентиляторов исполнения 1 крепление электродвигателя к корпусу вентилятора.

Размер вентилятора характеризуется его номером. За номер вентилятора, согласно ГОСТ 10616-90, принимается значение, соответствующее номинальному диаметру рабочего колеса D, измеренному по внешним кромкам лопаток и выраженному в дециметрах (табл. 1). Например, вентилятор с D = 200 мм обозначается № 2, D = 630 мм – – № 6,3 и т. д.

Таблица 1. Размеры вентиляторов

Номер

вентилятора

D, мм Номер

вентилятора

D, мм Номер

вентилятора

D, мм
1

1,12

1,25

1,4

1,5

1,8

2

2,24

2,5

100

112

125

140

160

180

200

224

250

2,8

3,15

3,55

4

4,5

5

5,6

6,3

7,1

280

315

355

400

450

500

560

630

710

8

9

10

11,2

12,5

14

16

18

20

800

900

1000

1120

1250

1400

1600

1800

2000

ГОСТ 5976-90 предписывает отсчитывать углы входа β1 и выхода β2 лопаток рабочих колес радиальных вентиляторов в сечениях, перпендикулярных оси вращения, в соответствии с рис. 5.

Значительные преимущества имеют вентиляторы, выполненные по схеме исполнения 1 (см. рис. 4). Они безотказны в работе, компактны, экономичны и бесшумны. В таких вентиляторах колесо посажено непосредственно на вал электродвигателя. Однако это положение колеса возможно только при малом его диаметре, т. е.

в малых вентиляторах. В вентиляторах больших размеров колеса с валом двигателя соединяют при помощи муфт (исполнения 2, 3). В вентиляторах с ременной передачей шкив размещается между подшипниками или консольно (исполнения 4, 5, 7). Вентилятор двухстороннего всасывания изображен на схеме исполнения 6 и 7.

Рис. 5. Углы входа β1 и выхода β2 лопаток рабочих колес радиальных вентиляторов в сечениях: а – лопатки, загнутые назад (β2 < 90о); б – лопатки, загнутые вперед (β2 > 90о); в – лопатки, радиально оканчивающиеся (β2 = 90о); г – профильная лопатка

Следует отметить, что непосредственное соединение вентилятора с электродвигателем хотя и более выгодно (отсутствуют потери на передачу, обеспечивается компактность установки), все же имеет и недостатки: выпускаемые промышленностью и применяемые в системах теплогазоснабжения и вентиляции асинхронные электродвигатели имеют ограниченное число оборотов (750, 950, 1450 и 2900 об/мин), что делает невозможным регулирование числа оборотов вентиляторов.

Корпусы вентиляторов на прочность не рассчитываются, и толщина их стенок принимается по конструктивным соображениям. Например, корпусы для вентиляторов общего назначения изготавливают из листовой углеродистой стали толщиной 1,5-3 мм, для дымососов и пылевых вентиляторов – 2-5 мм.

Корпусы вентиляторов изготавливаются сварными. Ранее корпусы выполнялись клепаными. В малых вентиляторах корпуса крепят к станине, в больших – на специальных опорах. Станины отливаются из чугуна или сваривают из листовой и угловой стали. На станинах в подшипниках устанавливают валы.

Зазор между колесом и входным патрубком не должен быть больше 1% диаметра колеса. При больших зазорах работа вентилятора резко ухудшается из-за увеличения протечек.

Заводы выпускают вентиляторы определенных типов, т. е. выполненные по одной конструктивной и аэродинамической схемам. Типы вентиляторов объединяют в серии; каждой серии и каждому типу присваивают определенный индекс.

Виды и сферы применения пылевых вентиляторов

Колеса и корпусы вентиляторов выпускаются в соответствии с ГОСТ 5976–90. Согласно номенклатуре вентилятору присваивается обозначение, которое должно состоять:

  1. из буквы В – вентилятор;
  2. буквы Р – радиальный;
  3. стократной величины коэффициента полного давления на режиме максимального полного КПД, округленной до целого числа;
  4. величины быстроходности на режиме максимального полного КПД, округленной до целого числа.

Пример обозначения типа радиального вентилятора с коэффициентом полного давления, равным 0,875 (на режиме максимального полного КПД), и быстроходностью, равной 71,5: ВР 88-72.

Обозначение типоразмера вентилятора:

  1. тип;
  2. номер по ГОСТ 106-16 ;
  3. класс.

Пример обозначения типоразмера радиального вентилятора типа ВР 88-72, номера 4, 1-го класса: ВР 88-72-4.1.

Следует отметить, что в литературе часто радиальный вентилятор называют центробежным вентилятором, вследствие чего в обозначении вентилятора букву Р (радиальный) заменяют на букву Ц (центробежный).

Вентиляторы, предназначенные для перемещения воздуха, содержащего механические примеси, называются пылевыми вентиляторами. Пылевые вентиляторы предназначены для перемещения пылегазовоздушных смесей, агрессивность которых по отношению к углеродистым сталям обыкновенного качества не выше агрессивности воздуха с температурой до 80 ОС, не содержащих липких веществ.

Вентиляторы используются в системах отбора запыленного воздуха во время производства железобетонных конструкций и цемента; в сварочном производстве для удаления шлаков и пыли; при производстве круп, в системах пневмотранспорта зерна; для удаления металлической пыли от металлообрабатывающих станков, древесной стружки и опилок деревообрабатывающих станков, хлопка, волокна и др.

На рис. 6 представлен радиальный пылевой вентилятор типа BЦП 7-40 исполнения 5 среднего давления производственного предприятия ОАО «Вента»: количество радиальных лопаток – 6; ременный привод; направление вращения – левое и правое; одностороннее всасывание; корпус – поворотный спиральный.

Предлагаем ознакомиться  Котел с самым высоким кпд

Классификация типов вентиляционных вентиляторов и принцип их работы

Вентиляторы применяются в системах вытяжной и приточной вентиляции с механическим побуждением воздуха. На рис. 4 показана типичная схема компоновки промышленной системы приточной вентиляции. Воздух из атмосферы поступает через воздухозаборное устройство 1, очищается от пыли в воздушном фильтре 2, затем подогревается в поверхностном воздухонагревателе (калорифере) 3.

Вентилятор пылевой исполнение 1 (схема 1)

Рис. 4. Схема приточной системы вентиляции

Вытяжная система вентиляции (рис. 5) предназначена для удаления из производственных помещений загрязненного воздуха. Загрязненный вредными примесями воздух забирается из помещения через воздухоприемные устройства 4 и по воздуховоду 3 поступает к входному патрубку вентилятора 2, затем подается в устройство очистки 1, где происходит очистка воздуха от механических примесей. Очищенный от механических примесей воздух удаляется в атмосферу.

Рис. 5. Схема вытяжной системы вентиляции

Под действием вентилятора в трубопроводе создается воздушный поток. Важными параметрами воздушного потока являются его скорость, давление, плотность, массовый и объемный расходы воздуха.

где F – п лощадь поперечного сечения трубы, м2;

с – скорость воздушного потока в заданном сечении, м/с;

ρ – плотность воздуха, кг/м3.

Давление. Различают статическое, динамическое и полное давление в воздушном потоке.

Статическим давлением РСТ, Па, принято называть давление частиц движущегося воздуха друг на друга и на стенки трубопровода. Статическое давление отражает потенциальную энергию воздушного потока в том сечении трубы, в котором оно измерено.

На практике давления газообразных сред могут измеряться относительно двух различных уровней (рис. 6):

  • уровня абсолютного вакуума (абсолютного нуля давления) – идеализированного состояния среды в замкнутом пространстве, из которого удалены все молекулы и атомы вещества среды;
  • уровня атмосферного (барометрического) давления (ГОСТ 271-77).

Рис. 6. Виды измеряемых давлений

Давление, измеряемое относительно вакуума, называют давлением абсолютным РА. Барометрическое давление РБ– это абсолютное давление земной атмосферы. Оно зависит от конкретных условий измерения: температуры воздуха и высоты над уровнем моря. Давление, которое больше или меньше атмосферного, но измеряется относительно атмосферного, называют соответственно избыточным РИили давлением разрежения, вакуумметрическим РВ.

Единицы измерения давления определяются одним из двух способов:

  • через высоту столба жидкости, уравновешивающего измеряемое давление в конкретном физическом процессе: в единицах водяного столба при 4 °С (мм вод. ст. или м вод. ст.) или ртутного столба при 0 °С (мм рт. ст. или Торр) и нормальном ускорении свободного падения;
  • через единицы силы и площади.

В Международной системе единиц (СИ) единицей силы является ньютон (Н), а единицей площади – метр квадратный (м2). Отсюда определяются единица давления паскаль (1Па = 1 Н/м2) и ее производные, например килопаскаль (1 кПа = 103 Па), мегапаскаль (1 МПа = = 103 кПа = 106 Па).

Наряду с системой СИ в области измерения давления продолжают использоваться единицы и других, более ранних систем, а также внесистемные единицы.

В технической системе единиц МКГСС (метр, килограмм-сила, секунда) сила измеряется в килограммах силы (1 кгс ≈ 9,8 Н). Единицы давления в МГКСС – кгс/м2 и кгс/см2; единица кгс/см2 получила название технической, или метрической атмосферы (атм.). В случае измерения избыточного давления в единицах технической атмосферы используется обозначение «ати».

Соотношения между различными единицами измерения давления приведены далее.

Как правильно установить и рассчитать вентилирование ресторана или кафе

1 ньютон на квадратный метр (Н/м2, N/м2) = 1Па (Па·103 = 1кПа, Па·106 = 1МПа).

1 килограмм-сила на квадратный сантиметр (кгс/см2, kgf/cm2, атм., atm) = 98 066,5 Па.

1 миллиметр водяного столба (мм вод. ст., mm H2O, mm WS) = 9,80665 Па.

1 миллиметр ртутного столба (мм рт. ст., mm Hg, torr) = 133,322 Па. 1 физическая атмосфера (физ. атм.) = 760 мм рт. ст. = 101 325 Па.

1 бар = 100 000 Па.

Плотность воздуха есть масса единицы объема воздуха. По уравнению Клайперона, плотность сухого воздуха при температуре 20 ºС

где R – газовая постоянная, равная для воздуха 287,06 Дж/(кг·К);

T – температура по шкале Кельвина.

Рис. 7. Схема к анализу движения потока воздуха в трубе

При изменении давления воздуха в пределах до 5000 Па плотность его остается практически постоянной. В связи с этим

Изменение давления воздушного потока по длине трубы подчиняется закону Бернулли. Для сечений 1, 2 (см. рис. 7) можно написать

где ΔР1,2 – потери давления, вызванные сопротивлением потока о стенки трубы на участке между сечениями 1 и 2.

Анализ последних уравнений показывает, что с уменьшением площади поперечного сечения трубы скорость воздуха увеличится, но объемный расход останется неизменным. С увеличением скорости с возрастет динамическое давление потока. Для того чтобы равенство (1) выполнялось, статическое давление должно упасть ровно настолько, насколько увеличится динамическое давление.

При увеличении площади сечения потока динамическое давление упадет, а статическое ровно настолько же увеличится. Полное же давление в сечении остается неизменным.

Производительность (объемный расход) вентилятора Q, м3/с, представляет собой объемное количество газа, поступающего в вентилятор в единицу времени, отнесенное к условиям входа в вентилятор.

Полным давлением вентилятора РV, Па, называется разность абсолютных давлений потока при выходе из вентилятора Р02 и перед входом в него Р01 определенной плотности газа

Динамическое давление вентилятора Рdv, Па,

где ρ – плотность газа, кг/м3; FВ– площадь выходного отверстия вентилятора, м2 ; сВ– средняя скорость потока в выходном сечении вентилятора, м/с, определяется по формуле

Статическое давление вентилятора РSТ, Па,

Мощность N, Вт, потребляемая вентилятором, представляет собой мощность на валу вентилятора без учета потерь в подшипниках и элементах привода.

Полная мощность вентилятора

Полезная мощность вентилятора

Окружная скорость рабочего колеса

где D – диаметр колеса, м; n – частота вращения колеса, об/мин.

Коэффициент расхода (производительности) вентилятора

где F – площадь круга диаметром D, м2,

Коэффициенты полного Ψ, статического ΨSи динамического Ψd

давлений без учета влияния сжимаемости определяются по формулам

Коэффициент мощности, потребляемой вентилятором,

где N – мощность, потребляемая вентилятором, Вт.

Статический КПД вентилятора

Быстроходность nу[(м/с)1,5Па-0,75] и габаритность Dу[(м/с)-0,5Па0,25] вентилятора являются критериями для оценки пригодности работы вентилятора в режиме, заданном величинами Q, РV, D и частотой вращения n, и служат для сравнения вентиляторов различных типов.

Быстроходность и габаритность определяются по размерным и безразмерным параметрам и формулам

где РV– соответствует плотности ρ = 1,2 кг/м3.

где ρ – плотность перемещаемого газа, кг/м3 ; с – скорость газа, м/с; индексы н (начальное) и к (конечное) относятся к параметрам в сечениях перед вентилятором и за ним.

Наблюдаемое давление вентилятора, Па, работающего на вентиляционную сеть, находят из выражения

где ρА– плотность вытяжного воздуха; ρГ – средняя плотность перемещаемого газа, кг/м3; zВи zА– геометрические отметки сечений сбрасывания и приема газа.

Мощность вентилятора

Что такое чиллер?

Аэродинамические качества вентиляторов оцениваются по аэродинамическим характеристикам, выраженным в виде графиков зависимости полного РV, статического РSVи (или) динамического РdVдавлений, развиваемых вентилятором, потребляемой мощности N, полного η и статического ηSКПД от производительности Q при определенной плотности газа ρ перед входом в вентилятор и постоянной частоте вращения n его рабочего колеса. На графиках указываются размерности аэродинамических параметров.

Допускается построение аэродинамических характеристик при частоте вращения, изменяющейся в зависимости от производительности, с указанием зависимости n (Q) на графике. Вместо кривой РSV(Q) на графике может указываться кривая динамического давления РdV(Q) вентилятора.

ГОСТ 10616-90 допускает при построении аэродинамической характеристики кривые РSV(Q), РdV(Q) и ηS(Q) не указывать.

Аэродинамические характеристики вентилятора должны строиться по данным аэродинамических испытаний, проведенных в соответствии с ГОСТ 10921.

В общем случае характеристика вентилятора (рис. 1) – это графическая зависимость полного давления РV, мощности на валу N и КПД η от подачи Q при постоянной скорости вращения рабочего колеса (РК), с определенным диаметром РК и известной плотностью перемещаемой среды и аэродинамической схемой, т. е. совокупностью геометрической конфигурации проточной части и РК.

Диагональные приборы

Они только визуально отличаются от аксиального типа: забор воздуха осуществляется в аналогичном направлении, а вот его выход особенного направления — диагонального. Оригинальная коническая форма кожуха способствует увеличению скорости истечения воздуха, но, если сравнивать их с осевыми устройствами аналогичного размера и производительности, то звуковое воздействие у такого варианта будет намного ниже.

Предлагаем ознакомиться  Котел аристон не греет воду причина

Центробежные вентиляторы

Простота конструкции центробежных вентиляторов позволяет обеспечивать огромную производительность, хорошие показатели давления воздуха. А простота гарантирует им надежность в очень сложных условиях.

Делаем вентиляцию в бане

Конструкционно центробежный вентилятор состоит из нескольких важных функциональных узлов:

  • двигатель;
  • система прокачки воздуха в виде плоского колеса с лопатками;
  • корпус, не только выполняющий роль несущей конструкции, но и формирующий циркуляцию воздуха.

Вся конструкция накрывается дополнительной оболочкой. Она служит звукоизолирующим кожухом. Обычно он обшивается шумопоглощающим материалом.

Система прокачки воздуха представляет собой плоское колесо. Оно состоит из пары дисков. Один из них сплошной, он соединен с двигателем. Второй имеет большое центральное отверстие. Между собой диски соединены по периметру лопатками-лопастями. При вращении они формируют поток воздуха, направленный наружу колеса.

Забор рабочего тела производится через центральное отверстие одного из дисков. В зависимости от конфигурации и формы лопастей, насосы способны:

  • работать с твердыми составляющими потока, модели не имеют дисковых элементов;
  • перемещать воздух с незначительным содержанием твердых примесей, однодисковые решения;
  • работать с чистым воздухом, в широком диапазоне выходных объемов и давлений, классические двухдисковые модели.

В трехдисковых насосах две области лопаток. Подобные модели путем реверсирования двигателя способны перекачивать рабочее тело в двух направлениях.

Как это работает

Работу центробежного вентилятора можно описать достаточно просто.

  1. Двигатель при включении устройства начинает вращать лопастное колесо.
  2. Воздух между лопатками под действием центробежной силы начинает двигаться наружу.
  3. На внутренней части лопастного колеса образуется зона низкого давления.
  4. Воздух снаружи под действием разности давления поступает в центр колеса.
  5. Движение воздуха к краю лопастного колеса заканчивается на границе — стенке корпуса. Здесь кинетика рабочего тела преобразуется в давление.
  6. Образованное лопастным колесом давление воздуха выбрасывает последний через выходной патрубок.

Такая простая схема работы обуславливает надежность конструкционного решения центробежного вентилятора. Сегодня он встречается повсеместно в системах вентилирования, для поддержания формы уличных надувных аттракционов, в схемах удаления пыли и других твердых частиц из воздуха.

Виды лопастей

В зависимости от конфигурации лопастей, у насоса могут быть разные эксплуатационные характеристики. Это не только выходные технические параметры в виде давления и объема перекачки воздуха. Применяя те или иные конфигурации лопастей, инженеры добиваются снижения массогабаритных показателей насоса и уровня шума.

  1. Изогнутые назад лопасти не позволяют пыли накапливаться внутри вентилятора, хорошо подходят для воздуха с большим уровнем примесей.
  2. Изогнутые вперед лопасти прокачивают максимальное количество воздуха, насос способен обеспечить большое давление.
  3. Самый простой тип лопастей — прямые радиальные. Они применяются в насосах с низким давлением, отличаются малым уровнем шума. Для защиты от эрозии лопатки обрабатывают специальными составами.

5. Шумо- и звукоизоляция

Работа вентиляторов сопровождается большим или меньшим шумом. Интенсивность шума вентиляторов обуславливается их типом, режимом работы, качеством изготовления и монтажа.

Осевые вентиляторы создают больший шум, чем радиальные; это объясняется тем, что их коэффициент давления значительно меньше и поэтому для создания давления требуется большая окружная скорость.

Радиальные вентиляторы с лопастями, загнутыми вперед, создают больший шум, чем с лопастями, загнутыми назад (при равной окружной скорости), так как у них большие скорости выхода воздуха с лопастей и в кожухе.

Окружные скорости рабочих колес из соображений относительно бесшумной работы не должны превышать 25–30 м/с для радиальных и 30–35 м/с для осевых вентиляторов, устанавливаемых в гражданских зданиях. В промышленных зданиях в зависимости от громкости технологического шума окружные скорости рабочих колес вентиляторов могут достигать 35–50 м/с.

Шум механического происхождения вызывается передачей, плохой балансировкой вентилятора, работой подшипников и низким качеством монтажа. Снижению механического шума способствует установка вентилятора на одном валу с электродвигателем. Вентиляторы массивной конструкции создают меньшие шумы. Для уменьшения шума все вентиляторы устанавливаются на специальном виброизолирующем основании, расположенном на резиновых или пружинных амортизаторах. С этой же целью вентиляторы присоединяются к системе воздуховодов при помощи гибких вставок из прорезиненной ткани.

Величину шума вентилятора в децибелах (дБ) при разных режимах работы удобно определять при помощи акустических характеристик, обычно совмещаемых с аэродинамическими характеристиками.

Рис. 40. Графики зависимости: а – уровня звуковой мощности  LPQ от давления РV и производительности Q; б – поправки ΔL от КПД вентилятора 

В соответствии с ГОСТ 5976-90 суммарные уровни звуковой мощности LPΣ радиальных вентиляторов на номинальном режиме со стороны нагнетания должны удовлетворять условию

где Q – производительность, м3/с; РV– полное давление, Па; η – КПД. Допускаемые верхние значения отклонений до 2 дБ, нижние значения не ограничиваются.

На рис. 40, а приведены графики зависимости уровня звуковой мощности LPQ от давления РVи производительности Q и на рис. 40, б поправки ΔL от значения КПД. Суммарный уровень звуковой мощности

Для помещений с повышенными требованиями к уровню шума ООО «ВЕЗА» выпускает канальные вентиляторы в шумоизолированном корпусе. Корпус выполнен из оцинкованной стали и представляет собой коробчатую конструкцию. Пространство между стенками шумоизолирующего корпуса заполнено невоспламеняющейся ватой, обладающей высокими звукоизоляционными свойствами.

Вентиляторы диаметрального сечения

Изделия этого типа состоят из корпуса, имеющего нестандартную конструкцию выхода и входа: диффузор и патрубок соответственно, и цилиндра, больше напоминающего барабан с параллельными рабочими элементами, которые немного загнуты по ходу вращения. Вся хитрость функциональной особенности заключается в двукратном и перекрестном прохождении воздуха сквозь рабочее колесо.

Тангенциальные вентиляторы отличаются довольно высокими параметрами по аэродинамике и способны создавать так называемый плоской конфигурации поток весьма широкого размера.

Отличительные черты: компактность установки и высокий КПД, по сравнению с другими вентиляторами. Используются в файнколах — аппаратах для охлаждения или нагревания помещений, тепловых завесах зимой при входе в торговые центры, супермаркеты и фирменные бутики.

Прямоточные или безлопастные модели

Безлопастный вентилятор — достаточно новое изделие в классе бытовой техники. Они только осваивают отечественный рынок. Работа устройств данного класса основана на законе Бернулли. Грубо говоря, быстро движущиеся потоки воздуха в тщательно продуманной конструкции не просто инициируют движение дополнительных объемов, но и значительно повышают общую эффективность вентиляции.

Виды и сферы применения пылевых вентиляторов

Устройство состоит из нескольких функциональных частей.

  1. Рамка, обычно в виде круга или овальной формы. Ее конструкция подразумевает одновременный выброс воздушных масс изнутри корпуса вентилятора и забор объема снаружи.
  2. Основание, служащее основой для крепления всех компонентов.
  3. Компактная турбина.
  4. Двигатель.

Работает вентилятор достаточно просто. Турбина приводится во вращение мотором. Она засасывает воздух через отверстия в нижней части прибора. Одновременно конструкция турбины создает значительные завихрения. В результате воздух ускоряется до 15 раз. Разогнанный газ выбрасывается через щелевые каналы рамки, огибая ее поверхность.

Такой принцип действия вентилятора имеет массу достоинств.

  1. Поток воздуха можно плавно регулировать.
  2. Все движущиеся части скрыты внутри корпуса, что означает безопасность использования прибора.
  3. Легко регулировать направление обдува, просто изменяя позицию кольца.
  4. Снижается расход энергии, до 20% в сравнении с классическими моделями при равной производительности.

Мы перечислили основные виды вентиляторов, которые могут применяться для вентиляции промышленных объектов, государственных учреждений, ресторанов и столовых, многоэтажных зданий спальных районов, которые монтируются в неприметных местах с тыльной стороны или же сверху на плоских перекрытиях крыш. Существуют специальные устройства огромной мощности, которые способны осуществлять надежную вентиляцию объектов одновременно по нескольким воздуховодам, но это уже совершенно другая тема.

Супер отопление
Adblock detector